
E-LAB Computers Pascal-scm Multitasking Development system for Atmel® AVR® singlechips

E-LAB Computers Grombacherstr. 27 D74906 Bad Rappenau Tel 07268/9124-0 Fax 07268/9124-24

E-LAB ComputersE-LAB Computers

AVRco32AVRco32
Pascal-scm

Features
h Pascal Compiler for Atmel’s
 AVR 8Bit RISC cpu’s,
 90S2313, 90S4414 and 90S8515 etc
h Complete implementation
 of the Pascal standard
h Floating point: SIN, COS, PWR,
 PWR10, SQRT, LOG10, LOG2
h Additional strong support of bit
 manipulation
h Many features especially for
 embedded control applications
h Most of the On-Chip peripherals
 are implemented by comfortable
 library routines:
 SCI, ADC, PWM, Timer
h Additional drivers implemented
 by software: LED7Seg Display,
 LCD-display, I2C-BUS, Stepper,
 SwitchPorts, Triggered ports etc
h High level support of internal
 EEprom
h Complete PID-controllers impl.
h Multiprocessing Kernel
h Complete support of the AVR-Studio
 debugger on high level language.
 Single step on Pascal statements
h Assembler statements can be
 included in Pascal source
h Multi-window editor with comfor-
 table project management
h Syntax and error highlighting
h Completely configurable
 environment
h Incircuit-programmer included
h Application Wizzard
h Low priced
h 6 months free update
h free demo versions

Product Information

 The AVRco32 is a Multi-Task Pascal development system for the AVR
family of microcontrollers. All devices exc. 90S1200 are supported. The
system was specially designed for the needs of the designer of embedded
systems. Therefor many extensions for single chips are included.

 AVRco32 consists of a mighty multi window editor, an Application
Wizzard, the Pascal compiler, the assembler and an Incircuit-programmer.

 The editor resp. IDE is completely configurable, has configurable syntax
and error highlighting, unlimited filesize, multiwindow. It’s heavily project
oriented. Automatic reload of faulty source files. Cursor will be positioned to
the incorrect syntax position. Online help of the editor functions. Context
sensitive online help for the Pascal syntax. Nearly unlimited undo/redo.

 The Pascal compiler supports all standard Pascal definitions incl. Records.
Types: Bit, Boolean, Byte, Char, Enum, Word, Integer, Pointer, String,
Array, Record, Float, SysTimer, Pipe, Semaphore.
Operators: not, div, mod, and, or, xor, shl, shr, rol, ror, in
System functions: Lo, HI, Abs, Bit, Incl, Excl, Toggle, SetBit, Inc, Dec,
Swap, Odd, Length, SizeOf, Delay, FillBlock, CopyBlock, WatchDog,
Sleep, CpuSleep, EnableInts, DisableInts, IntToStr, ByteToStr, IntToHex,
ByteToHex, FloatToStr, StrToFloat, StrToInt.
Statements: Begin, Return, End, If, Then, Else, Elsif, Endif, Label, Goto,
Case, For, While, Repeat, Loop, Type, Const, Var, Procedure, Function,
With, True, False, Nil, Import.

Support of onchip peripherals: ADC, SCI, PWM, TIMER.
Software implementation of LCD-Display, triggered/debounced Ports, I2C-
BUS, Stepper-Controller, 7seg-Display, LON etc.
Multiprocessing-Kernel: PROCESS, TASK, SCHEDULER, PRIORITY etc.

Complete interrupt support and handling. Optional runtime errorhandling of
software stack and string/array checks. Internal EEprom can be accessed as
normal defined vars or as an array of bytes.
The compiler supports structured constants, forward declaration, conditional
compile and also assembler statements.
The AVR-Studio simulator/debugger/emulator is completely integrated.
Single steps and breakpoints on Pascal statements. Program variables can be
examinated with their Pascal names in the watch window.

Contact:Contact:
E-LAB ComputersE-LAB Computers
Grombacherstr. 27
D74906 Bad Rappenau
Germany
Tel. (49) 7268 9124 0
Fax. (49) 7268 9124 24
email: info@e-lab.de
WEB: http://www.e-lab.de

E-LAB Computers Pascal-scm Multitasking Development system for Atmel® AVR® singlechips

E-LAB Computers Grombacherstr. 27 D74906 Bad Rappenau Tel 07268/9124-0 Fax 07268/9124-24

Pascal-scm AVR Multitask Development
Types Boolean, Byte, Char, Bit, String, Array, Word,
Integer, Enum, Procedure, Pointer, LongInt, LongWord,
Float, Record, Semaphore, Pipe, SysTimer, PIDcontrol

Operants not, div, mod, and, or, xor, shl, shla, shr,
shra, rol, ror, in, •, +, -

Keywords Program, From, Import, Device, Define,
Const, StructConst, Var, Nil, Implementation, Procedure,
Function, Process, Task, Interrupt, Trap, true, false,
Begin, Return, Exit, End, ASM, EndASM, if, then, else,
elsif, endif, while, repeat, break, until, Loop, ExitLoop,
EndLoop, for, to, downto, by, case, exit, Label, Goto

System Library Lo, Hi, Abs, Odd, Swap, UpCase, Val,
Ord, Min, Max, Random, Length, SizeOf, Incl, Excl,
SetBit, Bit, Toggle, Inc, Dec, Lower, Higher, WithIn,
Trunc, Round, Frac, Sqr, Sqrt, Pow, Pow10, Exp,
Deg2Rad, Rad2Deg, ArcTan, Tangens, Sin, Cos, Log2,
Log10, FillBlock, CopyBlock, StrToInt, StrToFloat,
FloatToStr, IntToStr, ByteToStr, LongToStr, ByteToHex,
IntToHex, LongToHex, PipeSend, PipeRecv, PipeStat,
PipeFull, WaitPipe, PipeFlush, EnableInts, DisableInts,
CPUSleep, Sleep, WatchDogInit, WatchDogTrig,
Suspend, Resume, Lock, UnLock, Priority, Main_Priority,
Schedule, WaitSema, SendSema, SemaStat,
FlushBuffer, PID.Required, PID.Actual, PID.pFactor,
PID.iFactor, PID.dFactor, PID.sFactor, RunTimeErr,
SwitchP1, SwitchP2, Port_Stable1, Port_Stable2,
Inp_Stable1, Inp_Stable2, Inp_Raise1, Inp_Raise2,
mDelay, uDelay, Write, Read, LCD, LCDout, LCDinp,
LCDctrl, LCDstat, RX_Buff, TX_Buff, SERinp, SERout,
SERstat, ADCport, GetADC, PWMPort1, PWMPort2,
PWMout1, PWMout2, I2CPort, I2Cinp, I2Cout, I2Cstat,
Disp7Seg, EEprom.

Processes and Tasks
Pascal-scm includes a multitasking system, which is
supported by an amount of functions and procedures.
Up to 15 processes and tasks can be defined, which are
periodically invoced by the scheduler, dependent on their
priority and status.

Jobs can be done in background without intervention of
the main program. The processes can communicate via
pipes and semaphores. Tasks are specialized
processes, which are cyclically invoced with a fixed time
delay, so they can do such periodic jobs like
PIDcontrols.

Multitasking is an extraordinary way to solve many
problems appearing in embedded applications. The most
development systems don’t support it or the multitasking
is sold with extra cost. Pascal-scm includes Multi
Tasking in a streamlined way.

Hardware support
The most hardware functions, like SCI, ADC, PWM etc.
are completely supported with functions and procedures
by the system library. The internal EEprom, if present, is
treated like a normal variable, but the special access-
modes of the CPU are used. So the user must not take
care about it. Initialization and dealing with such CPU-
parts in most cases is not an easy thing and doing this in
HLL is slow and very ROM consumptive.

Several additional hardware functions, which are not
supported by the CPU, like I2C, LCD, 7seg-Display,
STEPPER-motor etc are also supported by the library.
The PID-controller for temperature, speed or position
control, which is very hated by the programmers, is also
implemented. Each of this function is completely written
in assembler and therefore very compact and fast. They
also make the source code, because of simple function
calls, shorter and readable.

Normally, these system functions are as double so fast
as HLL handmade and take the half of the ROM space
as their counterparts. So these features of the compiler
are a big advantage against „pure“ compilers.

Compiler Switches
{$DEFINE name}, {$UNDEF name}, {$IFDEF},
{$IFNDEF}, {$ELSE}, {$ENDIF}
Conditional Compile switches for selecting or deselecting
parts of source code.

{$I Filename.ext}
Includes an Include-File, where "Filename" can include a
file-path.

{$J Filename.ext}
Includes an Include-File, where "Filename" shouldn’t
include a filepath. The "Home-Directory“ of the Compiler
is always used as the source filepath.

{$DATA}, {$IDATA}, {$PDATA}, {$XDATA}, {$EEPROM}
RAM resp. variables areas. The succeeding var
declarations will be placed into this area. Rem: each var
can also be assigned to a physical address.

($R+/-} Range Check for Arrays and Strings
{$S+/-} Stack Check

{$NOSAVE}
Only for Interrupt procedures. No registers or data will be
saved. User must save and restore them by himself.

{$W+/-} Compiler generates warnings.

Free Demo Version

Prices Compiler, IDE, Assembler, 2 Manuals, Incircuit-programmer DM 940.- +MwSt$ 590.- +ship
A multi-Module linkable version is available in 1999

6 months free updates. If expired then 30% of the actual price.

